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Joint Diffusion on the Line

Domokos Szasz!
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For a one-dimensional system of particles with elastic collisions the trajectories
of distinct particles are considered in the diffusion limit. If the initial distance
of two particles increases in an appropriate way, then in the diffusion limit the
joint distribution of the trajectories converges to a limit.

KEY WORDS: infinite-particle system; collision; diffusion fimit; joint dis-
tribution of trajectories.

1. INTRODUCTION
Dynamical theories explain Brownian motion as the motion of a particle
among a large number of interacting dynamic particles.®” However, it is
quite difficult to carry out such a program in practice, and this has been done
for the one-dimensional case only.® The motion of impenetrable particles on
R* is order-invariant, and consequently the linear model has certain peculi-
arities which are expected not to go over into the multidimensional case. It
is expected, for example, that nearby particles move independently of each
other, a statement that can only be true in RY (d > 2) and is certainly not
true in R'. In the present paper, we consider an infinite system of particles
on R? interacting through elastic collisions. We answer the questions: How
distant should two particles be in order to have independent trajectories
(in an appropriate limit!)? And, which is more interesting : When do we get a
nontrivial joint limit behavior for the trajectories of different particles?
Section 2 describes the mathematical model. Section 3 formulates the
results, which are proven in Section 4 and Appendices A and B. Section 5
contains comments and remaining problems.

2. DESCRIPTION OF THE MODEL
Our model can be described by a sequence {(g;, p;)}, — 0 <i < 20, of
random vectors, where (a) ¢; < ¢;, , and the sequence {g;}, — 0 <i < o0, is

! Mathematical Institute (HAS), Budapest, Hungary.
231

0022-4715/80/0800-0231$03.00/0 © 1980 Plenum Publishing Corporation



232 Domokos Szasz

locally finite; (b) p; € R. The particles are supposed to have identical, unit
masses and ¢; and p; denote the initial position and momentum of the particle
with label i. The particles move uniformly until they meet and then they
change momentum and go on uniformly with new momentum, and so on. By
an existence and unicity theorem of Harris,”® the motion will be uniquely
defined with probability 1 if we make the following assumptions:

(i) limy,_, ,n"'g, = u with probability 1, where p is a positive random
variable.

(i) The sequences {¢;}*. and {p;}*, are independent of each other
and {p;}Z, is a sequence of i.i.d. r.v.’s with Ep, =0, —o0 <i < o0.

Let us denote by y,(z) the path of the ith particle in the colliding
system of particles [note that for every t > 0, y;(¢) < y;,,(#)].

In Ref. 5 conditions are given ensuring the existence of a limit distribu-
tion in C[0, oo] for the rescaled trajectory p; ,(t) = A~ *[y;(41) — y,(0)],
— o0 < [ < co. With no loss of generality we can assume that at time 0 we have
two tagged particles: one (with label 0) at the origin and the other one
(with some label ;) at the point f(4) > 0. We are interested in the joint
distribution of py ,(-) and p;, 4(:) and, for simplicity, we denote ¢ ,(¢) =
po.a(t) and ¥ ,(1) = p;, ().

Our results will easily extend to the case of an infinite subsystem of
particles. In this case we insert an infinite number of tagged particles at each
point kf(A), —o0 <k < oo. If, in the natural order, they get the labels i,
(o = 0), then denote ¢¥(r) = p,,_,(?).

Before going over to mathematical results, let us turn to physics to
conjecture what these results should be like. Suppose the initial density is
6 = u~ ! and denote M = E|p,|. We will denote the dependence of the model
on ¢ and M by upper indices. Since, in our model, the impulse propagates
linearly, it is reasonable to expect that in the (6, u) model the inter-
dependence of the paths of the zeroth and i th particles will be nontrivial
if i; ~aM. In this case, we can write

M), you'(2) — ¥ou'(0))
~ (y&M(2), Yo' (1) — aMd)
= (M/8)'2(6M )™ V2 (yg (OM1), yasm(OMt) — aM )

If 6 — oo and M/é— 1, then we can expect that, keeping the density
and the mean impulse M fixed, we get a nontrivial joint behavior of ¢ ,(z)
and () (A = SM!) by choosing i; = aA.
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3. THE JOINT PATH OF SEVERAL PARTICLES
Denote

(x) = card{i: g;€ (0, x)} if x>0
YT —card{i: g e[x, 0]} if x<0

and introduce the processes S,(u) = A~ V?[y(Au) — u~ 'Au], where 4 > 1,
u € R. Suppose that:

1. There exists a process S(u), — o0 < u < oo, with stationary increments
and with trajectories in C(— 00, o) such that S,(u) converges to S(u), as
A — o0, in the sense of weak convergence in D(— o0, o).

2. sup,[(1 + |u])~ S ()] is stochastically bounded in A.

3. The increments of .S satisfy the mixing property, i.e., for any pair of
intervals (o', f') and (a”, "),

P(S(B) — S') < x', S(B" + a) — S(@" + a) < x")
— P(S(f") — S(@) < x)P(S(B") — S(&") < x")
if a— co.

2-Theorem. If A 'f(4A)— a(0 < a < «©)as 4 — oo, then the random
elements (¢ (-), ¥ ,()), converge to a random element (¢(-), Y¥(-)) in the
sense of the weak convergence on C[0, cv) x C[0, o0). Moreover, if a = o0,
then the processes ¢ and ¥ are independent, and if a = 0, then P(p(t) = Y (?),
t=20)=1.

It will not cause additional difficulties to prove the following:

w-Theorem. If A7'f(4)—> a, 0 <a< oo, as A— oo, then the se-
quence of processes {p{P(-), —o0 <k < o0} converges to the sequence
{o®(-), —o0 < k < o0}, i.e., for any ky ..., ky (N = 1) the random elements
(@%()...., %¥(.)) converge weakly to (¢*(-),..., 0*(-)) in x| C[0, ).
Moreover, if @ = oo, then the processes ¢®(-), —oo < k < oo, are inde-
pendent, and if a = 0, then

P((,D(kl)(l) — e — q’(kN)(t), t=20)=1

We remark that Theorem 2 of Ref. 5 can be understood as a 1-
Theorem. We also remark that condition 3 will only be used in the proof
of the independence stated in case a = co.

One would expect the last sentence in the theorems to be completed
by the statement “and if 0 < a < oo, then neither is the case.” For the
time being, however, the author does not see a way to prove this without
introducing long calculations.
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4. PROOFS

We will only prove the 2-Theorem, since the co-Theorem is proven
analogously. With no loss of generality we can assume u = 1. Consider

Plpur)<w, 1<I<e; Yuls) <u;, 1<j<f) (4.1)
Denote
zq(t, W) = A“”Z[ xipi = (AN APw — ¢))
i<0
= ¥ b < (A7 (A4VPw — q,-)}]
i>0
and

rafs, u) = Al/z( z x{p: = (As) "' [APu + f(4) — ¢;1}

= % P < (As)7'[A"u + f(4) - q]})

It is easy to see (cf. Ref. 3) that the events {¢ () < w} and {z,(t, w) < 0} are
identical and that the events {i,(s) <u} and {r,(s, u) <0} are identical.
Thus, the limit of the probability (4.1) can be calculated as the limit of the
probability

Pz (t;, w) <0, 1<I<e; ryls;,u) <0, 1<j<f)

By using the independence of {g,}*, and {p,}Z,, we can calculate the
joint limit distribution of the random variables z,(t;, w;)), 1 </<e, and
ra(s;, u;), 1 <j < f, by conditioning with respect to the g-algebra Z’ generated
by the random variables g,, n e Z. Indeed

Plosr)<w, L<I<e; Yus)<u, 1<j<f)
=EP(z,(1;,,w) <0, 1<I<e; ry5;u) <0, 1<j<fl%)
= EP(z,(t;, w)) — E(z,(t;, w)IZ) < ~E(z4(t;, w)IZ), 1 <I<e;
rA(Sj7 uj) — E(r4(s;, )4 < _E(rA(Sja uj)l‘%‘)’ 1<j<fI%) @.2)
Because of the independence of the sequences {g,} and { p,}, we can apply the

multidimensional CLT to the conditional distribution (with respect to ') of
the vector

(z4(t;, w) — Ez(t;, wIZ), 1<i<e; ryls;, u;)
— E(r(s;, uZ), 1<j<f) {4.3)

J’J
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The almost sure limit of this conditional distribution is (e + f)-dimensional
normal with mean vector 0 and a covariance matrix X, which will be
calculated in Appendix A.

By simple transformations

E(z (t,w)%) = —JSA(—pt + AY?w)F(dp) — w 4.4)

and similarly

E(r (s, w)lZ)

= “J[SA(A”f(A) —ps+ A7) = S (AT (A)IFdp) —u  (4.5)

Suppose a < 0. Analogously as in statement (c¢) of Lemma 2 in Ref. 5,
it can be shown that the conditional expectation vector

(B, w)IZ), 1<i<e; Elrgls;ullZ), 1<j<f))

J? )

tends in distribution to the vector (4, ,..., 4, k..., k), where

hl:_fs(_qtl)F(dq)_Wh I<i<e

k; = —f[S(a —gs;) — S@)JFdg) —w;,  1<j<f

Consequently, by (4.2), the joint distribution (4.1) tends to
Eq)z(JS(—q:,)F(dq) +w, 1<i<e;

f[S(a —gs;) — S(a)]Fldg) + u;, 1<) <f> (4.6)

where ®@ denotes the normal distribution with mean vector 0 and covariance
matrix X. This statement involves the weak convergence asserted in the
2-Theorem since the tightness part follows from the 1-Theorem.
If a =0, then choose e =1, 1, = 5, 1 <[ < e, arbitrarily. It is sufficient
to show that
Plo(t)=y(), 1<i<e)=1

Set Z = (01 <1< 2.- Suppose we have proven oy;=0, ;. ,=0,4,; =01, .
forany 1 < 1, j < e. Then the characteristic function E exp[Y5-, (¢, + Bm)]
of the random vector (¢,,....¢., %, ,..., n,) with distribution ®; is of the form

1 e
CXPI:“E Z ooy + “j)(ﬁt =+ ﬁj)}

Lji=1
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This fact plus the unicity of the correspondence between distributions and
characteristic functions give that

P((Cysns &) = (110 me)) = 1

Lemma 4.1. Let (&,,...,%,.9¢,...,4.) = (€,5) a 2e-dimensional ran-
dom vector (&,5 € R®). Then P(£ = n) =1 if and only if, for any w, ue R,

P& <w,np <u) = P(¢ < min(w, u))
(the minimum on the rhs is taken componentwise).

The lemma will be proven in Appendix B. The lemma implies that
Oz(w, u), (W, u e R°), is of the form @y (min(w, u)), where o = (6, ;); <1 <.+
Consequently, by denoting { = ({,,..., {,) for {, = | S(—qt,) F(dg), we can
conclude that the limit distribution (4.6) of (4.1) is of the form

E®y (min(§ + w,{ + u)) = E®y ({ + min(w, u))

which, again by Lemma 4.1, gives the desired statement.

Let now @ = 0. From the calculations of Appendix A it is easy to see
that, in this case, all the cross-covariances in X vanish. Thus, with prob-
ability 1, the limit distribution of (4.3) is (e + f)-dimensional normal, where
the first ¢ components and the remaining / components are independent.
By the continuity of the normal law, the difference of the probability on
the rhs of (4.2) and of

Os(—Eza(t, wI), 1<I<e; —E@05u)), 1<j<f) 47)

tends to zero with probability one if 4 — oo, where the argument of @y can
be written as in (4.4) and (4.5). Now condition 3 implies that the first ¢
arguments in (4.7) become independent of the remaining f arguments as
A— o0, and, consequently, our previous observation on X implies the
stated independence.

5. COMMENTS

(a) Similar results hold if instead of inserting particles at points kf(A4),
—o0 < k < oo, the particles with indices i, = kf(4), —oo <k < o0, are
tagged and their joint path observed.

(b) Like the 1-Theorem, our 2-Theorem and co-Theorem allow a variety
of generalizations, namely (1) with interdependence among the initial
momenta; (2) with nonuniform motion between collisions ; (3) for hard rods,
i.e., for particles with finite size. The first possibility deserves attention both
from physical and aesthetic point of views. Interdependence is physically more
natural and, aesthetically, a theorem with time-invariant conditions is
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superior. But, according to a result of Kallenberg,® our assumptions for the
momenta are time-invariant if and only if the positions form a mixed
Poisson process.

(c) Inthe generality of our assumptions, of course, no exact calculations
are possible. One hopes, however, that, under more restrictions, more exact,
e.g., not limit-type, results can also be obtained. For example, time-displaced
conditional distributions have been calculated by Aizenman ez al.") for an
equilibrium system of hard rods with different diameters (on R').

(d) The hypothesis that in RY d = 2, nearby particles move inde-
pendently could be strengthened by proving it is true in the following two-
dimensional model: initially, particles with unit masses are situated at each
“black” point of the square lattice Z> [a point (n,,n,)e Z?* is black if
n; = ny(mod 2)]. At time 0, each particle is given independently a random
impulse which can take the values (1,0), (0,1), (—1,0), (0, —1) with
probability 1/4. The particles move uniformly and, whenever they meet, they
undergo elastic collisions. Dao-Ouang-Tuyen and Szasz® have shown that,
in this model, the path of an observed particle is approximately a two-
dimensional Wiener process. Now, according to the hypothesis mentioned
above, the trajectories of the particles starting out from the points (0, 0) and
(1, 1) should be asymptotically independent, i.e., if y, () and y, ;(f) denote
their trajectories, then

(A_l/zyo,O(A[)> A_1/2y1,1(AS))‘ = (Wl(t), Wz(s))

weakly in C?[0, 0c0) x C?[0, ov), where W, () and W,(s) are independent
two-dimensional Wiener processes with identical covariance matrices

(39/50 0 )
Yy =
0 39/50

(the numerical form of X was incorrectly given in Ref. 2). Unfortunately,
the method of Ref. 2 does not apply to the joint description of different
trajectories, since the vector process consisting of two trajectories does not
possess.the Markov property.

APPENDIX A. CALCULATION OF THE
COVARIANCE MATRIX X

Our aim is to calculate the limit of the cross-covariance
Cov(z (1, w) — E(z4(t, WX ), 7 (s, u) — E(r (s, WIZNZ)
[Note that Cov(¢, |l ) = E(Eul¥ )} — E(E|%)E(uZ).] By the independence
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of the p;, this covariance is equal to

A~ Y Cov(x{g; + pAt > w, x{q; + pids > u + f(ANT)

i<0

+A470 Y Covix{g: + pidr < wh, g + pids > u + f(A}F)

0<igiy

+ A7 Y Coviy{q; + pAt < w, x{g; + pids <u + f(A}Z) (A1)

{see Fig. 1). It is easy to see that, if, for the events H; and H,, H, < H,, then
Cov(y{H,%}, x{H,}) = Cov(y{H}, x{H,}) = P(H,)P(H,")
and
Cov(y{H,}, x{H,}) = Cov(x{H,}, x{H,}) = — P(H,)P(H’)
Consequently, the sum (A.1) can be written as follows:

ALY Covix{q: + piAt < w}, x{g; + pids < u + f(AN}X)

=247 Y Covl(x{g + piAr < w}, x{g; + pids < u + f(A}X)

0<i<iy

(A.2)
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We show how to calculate the limit of the second sum. Transform it slightly

A7t Y Cov(x{g; + piAr < wi, xlg;: + piAs < u + f(A}HZ)

0<i<iy

f(4)
A4 j [EGlg + pidi < wh. xig + pids <u +[(4)])

0
— Ex{q + piAt < w}Ex{q + p;As < u + f(A)}]v(dq)
Here

S(A)
A1 f Ex{q + piAt < wiEx{q + piAs < u + f(A)}v(dq)

0

£04)
:A_lj jjx{q+pAt<w}
0

x x{q + p'As < u + f(A)} F(dp)F(dp')v(dq)
A-12wft A-12y/s+ f(A)/As
= A1
x v(A min{A~ 2w — pt, A 2u + (4s)"f(4) — p's, A f(A)})
x F(dp)F(dp')

From our assumptions it follows that sup,(1 + [y|”)lv(y)l < co and, if
lim,,, y,=y #0, then lim,_, A~ 'v(4y,) = y. Consequently, as 4 — oo,
the last integral tends to

0 als
J‘ f min{ —pt,a — p's, a} F(dp)F(dp')

Similarly

f(4)
A7t j Ex{q + pAt < wir{q + piAs < u + f(A)}v(dg)

0
0

— min{ —pt, a — ps, a} F(dp)
For the first sum in (A.2), the same argument yields that the limit is
L = Emin{|plt, a — psl}x{p(ps — a) > O}
— Emin{|plt, la — p'sl}x{p(p's — a) > 0}

where p and p’ are i.i.d. random variables with common distribution F.
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Thus, the limit of (A.2) is
L — 2[E min{|plt,a — ps,a}y{p <0}
— Emin{|p|t,a —p's,a}y{p <0,a — p's > 0}] (A.3)

It is worth observing that the limit of the conditional covariance (A.1) is
independent of the condition if once P(u = const) = 1 has been assumed.

APPENDIX B. PROOF OF LEMMA 4.1

Denote D = {(w,u)lw,uc R, w=mu} and let O= Xj_, [a,b) x
X ¢-y [2;, B;). To prove the “if” part of the lemma, we can show that
P(0) = 0 whenever [0 n D = @ . The disjointness relation implies that, for
some /, [a,, b)) and [«;, f,) are disjoint, say / =1, and a; < b; <oy < f;.
As usual

P(O)= Y £Glcy ..., Cys Vi 7,)

ClsensCesV1sesVe

where G denotes the distribution function of (¢,9), e = +1, and ¢, = g, or b,
and y; = a; or ;. Consequently, we have

PO) = G(bla Bi) — G(a1aﬁ1) - G(b1 ,01) + Glay, o)

where

G(Clayl): Z 8,G(c1 "-'969’ yl ERRAE] ‘Ye)
€2..0.5Ces Y250 7e
and ¢ = +1 depends on c,,...,c,, ¥2,...,7. only. By the condition of the
lemma, we can further write

PO)= G(b1sb1) - G(a1»a1) - G(b17b1) + GA(aual): 0

Hence the “if”” part, while the “only if ” part requires no proof.
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